

CERTIFICATION

AOAC Research Institute Performance Tested MethodsSM

Certificate No.

091301

The AOAC Research Institute hereby certifies the method known as:

BAX® System Real-Time PCR Assay Suite for STEC

manufactured by

Hygiena 2 Boulden Circle New Castle, DE 19720 USA

This method has been evaluated in the AOAC Research Institute *Performance Tested Methods*SM Program and found to perform as stated in the applicability of the method. This certificate indicates an AOAC Research Institute Certification Mark License Agreement has been executed which authorizes the manufacturer to display the AOAC Research Institute *Performance Tested Methods* SM certification mark on the above-mentioned method for the period below. Renewal may be granted by the Expiration Date under the rules stated in the licensing agreement.

Bradley A. Stawick, Senior Director Signature for AOAC Research Institute Issue Date
Expiration Date

January 12, 2024 December 31, 2024

AUTHORS

ORIGINAL VALIDATION: Stephen Varkey, Daniel DeMarco, Leslie Thompson, Mark Jensen, Bridget Andaloro, Dawn Fallon, Jeff Rohrbeck, Steve Hoelzer, Monica Tadler, Julie Kraynak, Eugene Davis, George Tice, and Morgan Wallace MODIFICATION DECEMBER 2017: Nisha Corrigan, Julie Weller, Morgan Wallace, Laurie Post, Benjamin Bastin, and Pat Bird

MODIFICATION JANUARY 2022: Nisha Corrigan, Casey Simmons, Leo Lorine, and Alex Tudor

MODIFICATION APRIL 2023: Nisha Corrigan, Julie Weller, Deja Latney, Margaret Morris, and Stacy Stoltenberg SUBMITTING COMPANY

DuPont ESL Building 400 Route 141 & Henry Clay Road

Route 141 & Henry Clay Road Wilmington, DE 19880-0400 USA CURRENT SPONSOR

Hygiena 2 Boulden Circle New Castle, DE 19720

METHOD NAME

BAX® System Real-Time PCR Assay Suite for STEC Formerly DuPont™ BAX® System Real-Time PCR Assay Suite for STEC

CATALOG NUMBERS

BAX® Screening Kit KIT2021 (D14642964), BAX® System Panel 1 KIT2008 (D14642970), BAX® System Panel 2 KIT2009 (D14642987)

INDEPENDENT LABORATORY

Aegis Food Testing Laboratories, Inc. 224 N. Derby Lane North Sioux City, SD 57049 INDEPENDENT LABORATORY MODIFICATION JANUARY 2022 TEQ Analytical Laboratories, Inc.

12635 E. Montview Blvd. Suite 175

Aurora, CO 80045 USA

USA

APPLICABILITY OF METHOD

Target organism

STEC Screening Assay – stx and eae virulence genes STEC Panel 1 assay – E. coli O26, O111, O121 STEC Panel 2 assay – E. coli O45, O103, O145

Matrixes – raw beef trim (375g), raw ground beef (325 g, 375g), raw ground beef plus soy (325g).

MODIFICATION DECEMBER 2017 – raw ground beef (25 g) and all-purpose flour (25 g).

MODIFICATION JANUARY 2022 – (AOAC SMPR 2020.12; 10 g) dried cannabis flower [>0.3% delta 9-tetrahydrocannabinol (THC)] and dried hemp flower (≤0.3% THC).

MODIFICATION APRIL 2023 – Sampling cloths swabbed from 375 g beef trim portions.

Performance claims – Sensitivity equal to or better than the corresponding reference method.

MODIFICATION JANUARY 2022: BAX System Real-Time PCR Assay for STEC Suite test kit is effective in screening for STEC species (O26, O111, O121, O45, O103, O145) in dried cannabis flower (>0.3% THC) and dried hemp flower (≤0.3% THC) at a 10 g test portion size and met the requirements of Standard Method Performance Requirements (SMPRs®) for Detection of Shiga toxin-producing Escherichia coli in Cannabis and Cannabis Products (AOAC SMPR 2020.012; 8). MODIFICATION APRIL 2023: The study data were unable to find a statistically detectable difference in results from zero between the BAX System Real-Time PCR Assay for STEC Suite and the United States Department of Agriculture Food Safety and Inspection Service MLG 5C.03 Detection, Isolation, and Identification of Top Seven Shiga Toxin-Producing Escherichia coli (STEC) from Meat Products, Carcass, and Environmental Sponges (8) from sampling cloths swabbed from 375 g beef trim test portions in 8-24 h using MP media or modified Tryptic Soy Broth with casamino acids (mTSB +caa).

REFERENCE METHODS

Least Cost Formulations, Ltd., MPN Calculator-Version 1.6 (http://www.lcfltd.com/customer/LCFMPNCalculator.exe) (2)

USDA FSIS (2011) Microbiology Laboratory Guidebook (3)

US FDA (2017) FDA Bacteriological Analytical Manual, Chapter 4A, Diarrheagenic Escherichia coli (6)

USDA FSIS (2014) *Microbiology Laboratory Guidebook*, Chapter 5B.05, Detection and Isolation of non-O157 Shiga Toxin-Producing *Escherichia coli* (STEC) from Meat Products and Carcass and Environmental Sponges (7)

Standard Method Performance Requirements (SMPRs®) for Detection of Shiga toxinproducing Escherichia coli in Cannabis and Cannabis Products (AOAC SMPR 2020.012) (8)

United States Department of Agriculture Food Safety and Inspection Service MLG 5C.03 Detection, Isolation, and Identification of Top Seven Shiga Toxin-Producing Escherichia coli (STEC) from Meat Products, Carcass, and Environmental Sponges (10)

ORIGINAL CERTIFICATION DATE	CERTIFICATION RENEWAL RECORD
September 24, 2013	Renewed annually through December 2024.
METHOD MODIFICATION RECORD	SUMMARY OF MODIFICATION
1. March 2017 Level 1	 Name change from DuPont Nutrition & Health to Qualicon
	Diagnostics LLC., a Hygiena company.
2. December 2017 Level 1	Inserts, manuals, and labels updated to Hygiena.
3. December 2017 Level 2	3. Matrix extension to add raw ground beef (25 g) and all-purpose
	flour (25 g).
4. January 2018 Level 1	4. Editorial changes to insert and labels to update Hygiena.
5. May 2019 Level 1	5. Editorial insert updates and corporate address.
6. December 2019 Level 1	6. Editorial/clerical changes.
7. December 2021 Level 1	7. Editorial changes.
8. January 2022 Level 2	8. Matrix extension to include dried cannabis flower (>0.3% THC) and
	dried hemp flower (≤0.3% THC).
9. April 2023 Level 2	9. Matrix extension to include sampling cloths for 375 g beef trim
	portions.
10. January 2024 Level 1	10. Editorial/clerical changes.
Under this AOAC Performance Tested Methods SM License Number, 091301	Under this AOAC Performance Tested Methods SM License Number, 091301
this method is distributed by:	this method is distributed as:
NONE	NONE

PRINCIPLE OF THE METHOD (1)

PCR Amplification - The BAX® System uses the Polymerase Chain Reaction (PCR) to amplify specific fragments of bacterial DNA, which are stable and unaffected by growth environment. The fragments are genetic sequences that are unique to each of the E. coli serotypes and the associated stx and eae virulence factors, providing a highly reliable indicator that the target organisms are present in the sample. The BAX System simplifies the PCR process by combining the requisite primers, polymerase and nucleotides into a stable, dry, manufactured tablet already packaged inside the PCR tubes. After amplification, these tubes remain sealed for the detection phase, thus significantly reducing the potential for contamination with one or more molecules of amplified PCR product.

Fluorescent Real-Time Detection - This automated BAX System method uses fluorescent detection to analyze PCR products. One PCR primer for each associated target (stx and eae in the STEC Screening assay and three of the O-types of interest in each of the STEC Panel assays) and one for the internal DNA control target contains a fluorescent dye (a different one for each target) as a constituent of the primer as well as a quencher (the uni-molecular combination of a primer and fluorescent dye with an associated quencher either on the same molecule or on a separate oligonucleotide constitute a Scorpion™ Probe). When incorporated into a PCR product, the dye and quencher are spatially separated at the temperature at which detection occurs, which causes an increase in emission signal. The BAX® System instrument measures the magnitude and characteristics of fluorescent signal change from cycle to cycle of the PCR process. An analysis by the BAX® System software algorithm then evaluates that data to determine a positive or negative result which is displayed as described below.

The BAX System real-time STEC suite is a two-stage screening method. After appropriate sample enrichment, the Screening assay is used to determine the presence or absence of the Shiga toxin genes (stx encoding genes) and intimin (eae encoding genes) and clear negative samples quickly. If the Screening assay returns positive results for both virulence factors, then the two multiplex panel assays are run to detect and differentiate the top six STEC serogroups of public health concern which are regulated by the United States Department of Agriculture Food Safety and Inspection Service (USDA-FSIS) as adulterants in beef.

DISCUSSION OF THE VALIDATION STUDY (1)

For the internal and independent laboratory validation studies, POD analysis for all food indicated that the test method performed in a fashion not statistically different than the reference method, with the exception of one beef trim replicate (spiked with an O26 strain). The one replicate that produced a statistically distinguishable difference in method performance indicated that the BAX System method had a greater recovery of the target pathogen than the reference method. The results of the inclusivity and exclusivity studies demonstrate 100% inclusivity and exclusivity for the BAX® System real-time STEC suite for detecting both the stx and eae virulence genes and identifying the six targeted serogroups.

Table 3. Method compa	arison results POD (1)										
Matrix	Strain	MPN ^a /test portion	Nc		Test Met	thod		Reference I	/lethod	dPODc ^g	95% CI ^h
IVIALIIX	Strain	WPN-7 test portion	IN-	X ^d	PODce	95% CI	х	POD _R ^f	95% CI	uPOD _C °	93% CI*
Beef Trim /		7.9 (3.0, 21)	5	5	1.0	(0.57, 1.0)	5	1.0	(0.57, 1.0)	0	(-0.43, 0.43)
MP Media	O26:H11	0.51 (0.24, 0.90)	20	17	0.85	(0.64, 0.95)	7	0.35	(0.18, 0.57)	0.50	(0.20, 0.30)
(11 and 24 hours)		Negative Control	5	0	0	(0, 0.43)	0	0	(0, 0.43)	0	(-0.43, 0.43)
Beef Trim /		10 (3.9, 26)	5	5	1.0	(0.57, 1.0)	5	1.0	(0.57, 1.0)	0	(-0.43, 0.43)
MP Media	O145:H-	0.42 (0.19, 0.73)	20	7	0.35	(0.18, 0.57)	7	0.35	(0.18, 0.57)	0	(-0.28, 0.28)
(11 and 24 hours)		Negative Control	5	0	0	(0, 0.43)	0	0	(0, 0.43)	0	(-0.43, 0.43)
Ground beef / mTSB		18 (7.3, 54)	5	5	1.0	(0.57, 1.0)	5	1.0	(0.57, 1.0)	0	-(0.43, 0.43)
+ 2 mg/L novobiocin	O103:H11	0.78 (0.41, 1.3)	20	15	0.75	(0.53, 0.89)	8	0.40	(0.22, 0.061)	0.35	(-0.05, 0.58)
(11 and 24 hours)		Negative Control	5	0	0	(0, 0.43)	0	0	(0, 0.43)	0	(-0.43, 0.43)
Ground beef with	005.1144	0.87 (0.54, 1.4)	30	19	0.63	(0.46, 0.78)	19	0.63	(0.46, 0.78)	0	(-0.25, 0.25)
soy /mTSB+caa+n (12 and 24 hours)	O26:H11	Negative Control	5	0	0	(0, 0.43)	0	0	(0, 0.43)	0	(-0.45, 0.45)
Ground beef with soy /mTSB+caa+n	O111:H-	0.91 (0.57, 1.4)	30	18	0.60	(0.42, 0.75)	18	0.60	(0.42, 0.75)	0	(-0.23, 0.23)
(12 and 24 hours)	OIII.II	Negative Control	5	0	0	(0, 0.43)	0	0	(0, 0.43)	0	(-0.45, 0.45)
		3.01	5	4	0.80	(0.38, 1.00)	5	1.00	(0.57, 1.00)	-0.2	(-0.62, 0.28)
Beef Trim / MP Media 11 hrs ⁱ	O145:H28	0.56	20	6	0.30	(0.15, 0.52)	9	0.45	(0.26, 0.66)	-0.15	(-0.41, 0.14)
		Negative Control	5	0	0.00	(0.00, 0.44)	0	0.00	(0.00, 0.44)	0.00	(-0.44, 0.44)
Beef Trim /		3.01	5	5	1.00	(0.57, 1.00)	5	1.00	(0.57, 1.00)	0.00	(-0.44, 0.44)
TSB Media 11 hrs i	O145:H28	0.56	20	7	0.35	(0.18, 0.57)	9	0.45	(0.26, 0.66)	-0.1	(-0.37, 0.19)
11 1113		Negative Control	5	0	0.00	(0.00, 0.44)	0	0.00	(0.00, 0.44)	0.00	(-0.44, 0.44)
Beef Trim /		3.01	5	5	1.00	(0.57, 1.00)	5	1.00	(0.57, 1.00)	0.00	(-0.44, 0.44)
TSB Media	O145:H28	0.56	20	7	0.35	(0.18, 0.57)	9	0.45	(0.26, 0.66)	-0.1	(-0.37, 0.19)
24 hrs i		Negative Control	5	0	0.00	(0.00, 0.44)	0	0.00	(0.00, 0.44)	0.00	(-0.44, 0.44)
Beef Trim /		3.01	5	5	1.00	(0.57, 1.00)	5	1.00	(0.57, 1.00)	0.00	(-0.43, 0.43)
mTSB + caa +n 24 hrs i	O145:H28	0.56	20	9	0.45	(0.26, 0.66)	9	0.45	(0.26, 0.66)	0.00	(-0.25, 0.25)
24 1115		Negative Control	5	0	0.00	(0.00, 0.44)	0	0.00	(0.00, 0.44)	0.00	(-0.44, 0.44)

able 4. I <u>ncl</u>	usivity Results for ST	EC Screening (stx	and eae containing st	trains) (1)				
Strain ID	Other ID	E. coli serotype	Source	BAX result eae	BAX result <i>stx</i>	<i>stx</i> ₁ gene	<i>stx₂</i> gene	<i>eae</i> gene
DEC 101	-	O145:H16	MSU>USDA	Pos	Pos	Present	Absent	Present
DD13417	CDC 85-337	O4:HNM	US CDC>USDA	Pos	Pos	Present	Present	Present
DD13418	CDC 95-3209	O14:HNM	US CDC>USDA	Pos	Pos	Absent	Present	Present
DD1450	-	O157:H7	Human Clinical	Pos	Pos	Absent	Present	Present
DD13430	CDC 86-3153	O125:HNM	US CDC>USDA	Pos	Pos	Present	Absent	Present
DD13435	CDC 88-3001	O165:H25	US CDC>USDA	Pos	Pos	Absent	Present	Present
DD13439	PHAC 03-2682	O5:HNM	PHAC>USDA	Pos	Pos	Present	Absent	Present
DD13440	PHAC 05-0376	O55:H7	PHAC>USDA	Pos	Pos	Present	Absent	Present
DD13448	SJ87	O63:HNM	US CDC>USDA	Pos	Pos	Present	Absent	Present
TD8136		O157:H7	Cattle	Pos	Pos	Present	Present	Present
DD13459	FDA BB2	O55:H7	US FDA>USDA	Pos	Pos	Present	Absent	Present
DD13461	FDA DD4	O177:H25	US FDA>USDA	Pos	Pos	Absent	Present	Present
DD13462	FDA EE5	O111:H8	US FDA>USDA	Pos	Pos	Present	Present	Present
DD13464	GG7	O103:H2	US FDA>USDA	Pos	Pos	Present	Absent	Present
DD13465	HH8	O26:H11	US FDA>USDA	Pos	Pos	Present	Absent	Present
DD13368	SJ18	O121:H19	US CDC>USDA	Pos	Pos	Present	Present	Present
MA6	-	O157:H7 (rough)	FDA	Pos	Pos	Present	Present	Present
05-6545	-	O45:H2	US CDC>USDA	Pos	Pos	Present	Absent	Present
BCL 17	-	O5:N	MSU>USDA	Pos	Pos	Present	Absent	Present
DD640	ATCC 43889	O157:H7	ATCC	Pos	Pos	Absent	Present	Present
DD641	ATCC 43890	O157:H7	ATCC	Pos	Pos	Present	Absent	Present
DD642	ATCC 43895	O157:H7	ATCC	Pos	Pos	Present	Present	Present
DD914	ATCC 43894	O157:H7	ATCC	Pos	Pos	Present	Present	Present
DD916	ATCC 35150	O157:H7	ATCC	Pos	Pos	Present	Present	Present
DD8297	C984	O157:H7	Korea	Pos	Pos	Present	Unknown	Present
DD8298	86-24	O157:H7	Human Clinical	Pos	Pos	Absent	Present	Present

HC = Health Canada , US CDC = United States Centers for Disease Control and Prevention PHAC = Public Health Agency of Canada, USDA = United States Department of Agriculture, US FDA = United States Food and Drug Administration

Table 5. Inclu	sivity Results	for STEC Panel 1 (E	. coli 026, 0111, 012	1) (1)			
Strain ID	<i>E. coli</i> serotype	Source	BAX result	Strain ID	<i>E. coli</i> serotype	Source	BAX result
DD1720	O26	Unknown	POS O26	DD1858	0111	Unknown	POS 0111
DD1807	026	USDA	POS O26	DD1927	0111	Unknown	POS 0111
DD1831	026	USDA	POS O26	R70	0111	Human Clinical	POS 0111
DD1913	026	USDA	POS O26	R71	0111	Human Clinical	POS 0111
DD5902	026	Unknown	POS O26	R72	0111	Human Clinical	POS 0111
DD5903	026	Unknown	POS O26	DD13362	0121	USDA	POS 0121
DD5904	026	Unknown	POS O26	DD13363	0121	USDA	POS 0121
DD5905	026	Unknown	POS O26	DD13364	0121	USDA	POS 0121
DD9704	026	Unknown	POS O26	DD13365	0121	USDA	POS 0121
DD9705	026	Unknown	POS O26	DD13366	0121	USDA	POS 0121
DD9706	026	Unknown	POS O26	DD13367	0121	USDA	POS 0121
DD9707	026	Unknown	POS O26	DD13368	0121	USDA	POS 0121
R144	026	USDA MDP	POS O26	DD13370	0121	USDA	POS 0121
R58	026	USDA MDP	POS O26	DD2440	0121	Unknown	POS 0121
R59	026	USDA MDP	POS O26	DD2460	0121	Unknown	POS 0121
R60	026	USDA MDP	POS O26	R184	0121	USDA	POS 0121
DD133400	0111	Unknown	POS 0111	R185	0121	USDA	POS 0121
DD133401	0111	Unknown	POS 0111	R186	0121	USDA	POS 0121
DD133402	0111	Unknown	POS 0111	R187	0121	USDA	POS 0121
DD133403	0111	Unknown	POS 0111	R188	0121	USDA	POS 0121
DD1729	0111	Unknown	POS 0111	R75	0121	USDA	POS 0121
DD1808	0111	Unknown	POS 0111	R76	0121	USDA	POS 0121
DD1809	0111	Unknown	POS 0111	R84	0121	USDA	POS 0121

Table 6. Incl	usivity Results	for STEC Panel 2 (E.	coli O45, O103, O1	45) (1)			
Strain ID	E. coli serotype	Source	BAX result	Strain ID	<i>E. coli</i> serotype	Source	BAX result
DD13349	O45	USDA	POS O45	DD13388	O103	University of Washington	POS 0103
DD13350	045	USDA	POS O45	DD13389	O103	University of Washington	POS 0103
DD13351	O45	USDA	POS O45	DD2521	O103	Unknown	POS 0103
DD13352	045	USDA	POS O45	DD2530	O103	Unknown	POS 0103
DD13353	O45	USDA	POS O45	R163	O103	USDA	POS 0103
DD13354	045	USDA	POS 045	R164	O103	USDA	POS 0103
DD13355	O45	USDA	POS O45	R165	O103	USDA	POS O103
DD13358	O45	USDA	POS O45	R166	O103	USDA	POS 0103
DD13390	0145	USDA	POS O45	R167	O103	USDA	POS O103
DD13361	045	USDA	POS O45	R168	O103	USDA	POS O103
DD2450	O45	Unknown	POS O45	R66	O103	Human Clinical	POS O103
R62	O45	Human Clinical	POS O45	R67	O103	Human Clinical	POS 0103
R63	O45	Human Clinical	POS O45	R68	O103	Human Clinical	POS O103
R64	O45	Human Clinical	POS O45	DD13391	0145	USDA	POS 0145
DD13373	O103	USDA	POS 0103	DD13392	0145	USDA	POS 0145
DD13374	0103	USDA	POS 0103	DD13393	0145	USDA	POS 0145
DD13375	O103	USDA	POS 0103	DD13394	0145	USDA	POS 0145
DD13376	0103	USDA	POS 0103	DD13395	0145	USDA	POS 0145
DD13377	O103	USDA	POS 0103	DD13397	0145	USDA	POS 0145
DD13378	0103	USDA	POS 0103	DD13398	0145	USDA	POS 0145
DD13379	O103	USDA	POS 0103	DD2439	0145	Unknown	POS 0145
DD13380	0103	USDA	POS 0103	DD2483	0145	Unknown	POS 0145
DD13381	O103	USDA	POS O103	DD2526	0145	Unknown	POS 0145
DD13382	O103	USDA	POS O103	R198	0145	USDA	POS 0145
DD13383	O103	USDA	POS O103	R77	0145	Human Clinical	POS 0145
DD13384	O103	USDA	POS O103	R78	0145	Human Clinical	POS 0145
DD13386	O103	USDA	POS O103	R79	0145	Human Clinical	POS 0145
DD13387	O103	USDA	POS 0103	R80	O145	Human Clinical	POS 0145

Table 7. Exclusivity Results for Non-	E. coli Strains (1)			
Strain name	Strain ID	STEC Screening result	STEC Panel 1 result	STEC Panel 2 result
Citrobacter freundii	DD2558	NEG	NEG	NEG
Citrobacter freundii	DD383	NEG	NEG	NEG
Enterobacter amnigenus	DD13186	NEG	NEG	NEG
Enterobacter amnigenus	DD13187	NEG	NEG	NEG
Enterobacter asburiae	DD13161	NEG	NEG	NEG
Enterobacter cloacae	DD13135	NEG	NEG	NEG
Enterobacter hormaechei	DD13162	NEG	NEG	NEG
Enterobacter sakazakii	DD13094	NEG	NEG	NEG
Enterobacter sakazakii	DD13099	NEG	NEG	NEG
Enterobacter sakazakii	DD13134	NEG	NEG	NEG
Enterobacter turicensis	DD13163	NEG	NEG	NEG
Escherichia hermanii	DD13151	NEG	NEG	NEG
Hafnia alvei	DD5588	NEG	NEG	NEG
Klebsiella oxytoca	DD658	NEG	NEG	NEG
Klebsiella ozaenae	DD657	NEG	NEG	NEG
Klebsiella pneumoniae	DD373	NEG	NEG	NEG
Morganella morganii	DD13142	NEG	NEG	NEG
Morganella morganii	DD3064	NEG	NEG	NEG
Listeria monocytogenes	DD1309	NEG	NEG	NEG
Bacillus subtilis	DD1939	NEG	NEG	NEG
Enterococcus faecalis	DD2425	NEG	NEG	NEG
Carnobacterium divergens	DD2539	NEG	NEG	NEG
Citrobacter diversus	DD2561	NEG	NEG	NEG
Pantoea agglomerans	DD2599	NEG	NEG	NEG
Vibrio vulnificus	DD2633	NEG	NEG	NEG
Cronobacter sakazaki	DD2847	NEG	NEG	NEG
Lactococcus lactis	DD3590	NEG	NEG	NEG
Stapylococus epidermis	DD3624	NEG	NEG	NEG
Streptococcus equi	DD3998	NEG	NEG	NEG
Leuconostoc mesenteroides	DD4001	NEG	NEG	NEG
Carnobacterium gallinarum	DD4063	NEG	NEG	NEG
Pediococcus damnosus	DD4303	NEG	NEG	NEG
Shigella sonnei	DD6832	NEG	NEG	NEG
Yersinia entercolitica	DD7120	NEG	NEG	NEG
Edwardsiella tarda	DD13139	NEG	NEG	NEG
Kluyvera georgiana	DD13261	NEG	NEG	NEG
Yersinia enterocolitica	DD7120	NEG	NEG	NEG
Burkholderia cepacia	DD11946	NEG	NEG	NEG
Xanthomonas maltophilia	DD6263	NEG	NEG	NEG
Providencia alcalofaciens	DD960	NEG	NEG	NEG
Shiqella boydii	DD1081	NEG	NEG	NEG
Shiqell flexneri	DD1083	NEG	NEG	NEG
Brocothrix thermosphacta	DD666	NEG	NEG	NEG
Hafnia alvei	DD2389	NEG	NEG	NEG
riajina diver	552505	1120	1,20	1420

Table 8. Exclusivity R	esults for Non-Ta	rget <i>E. coli</i> Strains	s (1)		
E. coli serogroup	Strain ID	stx/eae presence	STEC Screening result	STEC Panel 1 result	STEC Panel 2 result
01	DD2434	No/No	Neg	Neg	Neg
O104	DD13427	No/No	Neg	Neg	Neg
0113	DD13437	No/No	Neg	Neg	Neg
O113	DD13450	No/No	Neg	Neg	Neg
0113	DD13451	No/No	Neg	Neg	Neg
0113	DD13452	No/No	Neg	Neg	Neg
0113	DD13463	No/No	Neg	Neg	Neg
0113	DD2445	No/No	Neg	Neg	Neg
0114	DD1721	No/No	Neg	Neg	Neg
0115	DD1770	No/No	Neg	Neg	Neg
0117	DD13428	No/No	Neg	Neg	Neg
0117	DD2441	No/No	Neg	Neg	Neg
0118	DD2438	No/No	Neg	Neg	Neg
0119	DD13429	No/No	Neg	Neg	Neg
0125	DD1836	No/No	Neg	Neg	Neg
O126	DD13431	No/No	Neg	Neg	Neg
O126	DD1861	No/No	Neg	Neg	Neg
0127	DD1835	No/No	Neg	Neg	Neg
0128	DD13432	No/No	Neg	Neg	Neg
0128	DD13445	No/No	Neg	Neg	Neg
0128	DD13446	No/No	Neg	Neg	Neg
0128	DD13460	No/No	Neg	Neg	Neg
O128	DD1718	No/No	Neg	Neg	Neg
0137	DD13433	No/No	Neg	Neg	Neg
0139	DD1769	No/No	Neg	Neg	Neg
0143	DD1732	No/No	Neg	Neg	Neg
O146	DD13434	No/No	Neg	Neg	Neg
0152	DD1889	No/No	Neg	Neg	Neg

DISCUSSION OF THE MODIFICATION STUDY APPROVED DECEMBER 2017 (4)

The results of the BAX STEC Suite were compared to the results of the reference culture methods using probability of detection (POD) and difference in probability of detection (dPOD), according to the AOAC Micro Guidelines Appendix J. For flour samples enriched using the BAX System method, the real-time PCR assays (STEC Screening and Panel 1) detected *stx*, *eae* and the O121 serogroup for 8/20 low spiked samples and 5/5 high spiked samples at 24 h enrichment. All BAX System results were confirmed by culture (Table 1). The corresponding unpaired samples enriched using the FDA BAM reference method resulted in 7/20 culture positives for the low spike samples and 5/5 culture positives for the high spike samples. All uninoculated controls were negative. Inoculation levels were determined to be 0.43 CFU/test portion for the low level, and 4.3 CFU/portion for the high level, as determined using the BAM Ch. 4A method with the Least Cost Formulations (LCF) MPN calculator (2). At each inoculation level, the BAX STEC Suite method and the reference method demonstrated no significant statistical difference as indicated by POD analysis (the 95% confidence interval of the dPOD included 0 in all cases) as indicated in Table 2.

For raw ground beef samples enriched using the BAX System method, the real-time PCR assays detected *stx*, *eae* and the O126 serogroup for 11/20 low spiked samples and 5/5 high spiked samples at both 10 and 24 h enrichment times. All BAX® System results were confirmed by culture. The corresponding unpaired samples enriched using the USDA-FSIS culture reference method resulted in 8/20 culture positives for the low spike samples and 5/5 culture positives for the high spike samples. All uninoculated controls were negative. In addition, the BAX STEC suite was run on the reference method enriched test portions (mTSB), with results of 8/20 for the low spiked samples and 5/5 for the high spiked samples at both 10 and 24 h, matching the reference method results (see Tables 1 and 2). Inoculation levels were determined to be 0.51 CFU/test portion for the low level, and 3.36 CFU/portion for the high level, as determined using the USDA-FSIS MLG 5B.05 method with the LCF MPN calculator. At each inoculation level, the BAX STEC Suite method and the reference method, regardless of enrichment, demonstrated no significant statistical difference as indicated by POD analysis.

The results of these statistical analyses demonstrate no significant difference in the presumptive results compared to the confirmed results for flour and ground beef using either enrichment (BPW or mTSB) (Tables 1 and 2). While the flour and ground beef matrixes (enriched in BPW) produced more positives with the BAX System method than with the reference methods (Table 2), the differences were not statistically significant.

Table 1. BAX System STEC Presum	ptive vs. Confirmed Results for 25	5 g of All-Purpose Flour and Ground Beef (

Sample Type	Strain	MPN ^a /test	N ^b		BAX Presu	mptive		BAX Confir	med	dPOD _{cp} f	95% CI ^g
Sample Type	Strain	portion	IN ²	Χ ^c	POD_{CP}^d	95% CI	Х	POD _{cc} ^e	95% CI	uPOD _{CP} ⁄	95% CI ⁹
	CTEC 0121	0	5	0	0	(0.00, 0.43)	0	0	(0.00, 0.43)	0	(-0.45, 0.45)
Flour (25 g)	STEC 0121 DD13363	0.43	20	8	0.4	(0.22, 0.61)	8	0.4	(0.22, 0.61)	0	(-0.28, 0.28)
	DD13303	4.3	5	5	1	(0.57, 1.00)	5	1	(0.57, 1.00)	0	(-0.43, 0.43)
C	CTEC COC NACL	0	5	0	0	(0.00, 0.43)	0	0	(0.00, 0.43)	0	(-0.43, 0.43)
Ground Beef (25 g) in BPW ^h	STEC O26 MSU TW00971	0.51	20	11	0.55	(0.34, 0.74)	11	0.55	(0.34, 0.74)	0	(-0.28, 0.28)
III DP VV	1000971	3.36	5	5	1	(0.57, 1.00)	5	1	(0.57, 1.00)	0	(-0.43, 0.43)
C D (/25 .)	CTEC OOC MCU	0	5	0	0	(0.00, 0.43)	0	0	(0.00, 0.43)	0	(-0.43, 0.43)
Ground Beef (25 g) in mTSB ^h	STEC O26 MSU TW00971	0.51	20	8	0.4	(0.22, 0.61)	8	0.4	(0.22, 0.61)	0	(-0.28, 0.28)
III IIII 3B.	1000971	3.36	5	5	1	(0.57, 1.00)	5	1	(0.57, 1.00)	0	(-0.43, 0.43)

^aMPN/test portion = Most Probable Number is based on the POD of reference method test portions using the Least Cost Formulations MPN calculator.

Table 2. BAX System m	ethod vs. the Refer	ence method for tl	he Detection o	f non-O157 STE	C in 25g Flour	and Ground Beef					
Comula Tuna	Chuoin	MPN ^a /test	N ^b		BAX Meti	nod		Reference M	ethod	$dPOD_c^f$	95% CI ^g
Sample Type	Strain	portion	IN ²	Χ ^c	POD_{c}^{d}	95% CI	Х	POD _R ^e	95% CI	apobe	95% CI ⁹
	CTEC 0121	0	5	0	0	(0.00, 0.43)	0	0	(0.00, 0.43)	0	(-0.45, 0.45)
Flour (25 g)	STEC 0121 DD13363	0.43	20	8	0.4	(0.22, 0.61)	7	0.35	(0.18, 0.57)	0.05	(-0.23, 0.32)
	DD13303	4.3	5	5	1	(0.57, 1.00)	5	1	(0.57, 1.00)	0	(-0.43, 0.43)
Freeh Daw Crawad	CTEC O2C MCH	0	5	0	0	(0.00, 0.43)	0	0	(0.00, 0.43)	0	(-0.43, 0.43)
Fresh Raw Ground Beef (25 g) BPW ^h	STEC O26 MSU TW00971	0.51	20	11	0.55	(0.34, 0.74)	8	0.4	(0.22, 0.61)	0.15	(-0.15, 0.41)
beer (25 g) br w	1000971	3.36	5	5	1	(0.57, 1.00)	5	1	(0.57, 1.00)	0	(-0.43, 0.43)
Freeh Daw Crawad	CTEC O2C MCH	0	5	0	0	(0.00, 0.43)	0	0	(0.00, 0.43)	0	(-0.43, 0.43)
Fresh Raw Ground Beef (25 g) mTSB ^h		0.51	20	8	0.4	(0.22, 0.61)	8	0.4	(0.22, 0.61)	0	(-0.28, 0.28)
Deel (23 g) III13B"	1 00009/1	3.36	5	5	1	(0.57, 1.00)	5	1	(0.57, 1.00)	0	(-0.43, 0.43)

^oMPN = Most Probable Number is based on the POD of reference method test portions using the Least Cost Formulations MPN calculator.

 $^{{}^{}b}N$ = Number of test portions.

^cX = Number of positive test portions.

 $^{^{}d}POD_{CP} = BAX^{\otimes}$ method presumptive positive results divided by the total number of test portions.

^ePOD_{CC} = BAX® method confirmed positive results divided by the total number of test portions.

fdPOD_{CP} = Difference between the BAX® method presumptive result and BAX® method confirmed result POD values.

^{995%} CI = If the confidence interval of a dPOD does not contain zero, then the difference is statistically significant at the 5% level.

^hPortions were tested by the BAX STEC Suite System at 10 and 24 h with no difference in results.

 $^{{}^{}b}N/A = Not applicable.$

^cN = Number of test potions.

 $^{^{}d}X$ = Number of positive test portions.

^ePOD_C = Confirmed candidate method positive outcomes divided by the total number of trials.

^fPOD_R = Confirmed reference method positive outcomes divided by the total number of trials.

^gdPOD_C = Difference between the candidate method and reference method POD values.

^h95% CI = If the confidence interval of a dPOD does not contain zero, then the difference is statistically significant at the 5% level.

^hPortions were tested by the BAX STEC Suite System at 10 and 24 h with no difference in results.

DISCUSSION OF THE MODIFICATION STUDY APPROVED JANUARY 2022 (7)

The BAX System Real-time PCR Assays successfully detected the target STEC species in dried cannabis flower and dried hemp flower at a 10 g sample size. Difference in POD analysis for the presumptive versus confirmed positives showed no statistically significant differences, with all ranges of the 95% confidence intervals containing the zero point. There was one unconfirmed BAX presumptive positive in the STEC screen PCR assay in dried hemp flower that could not be confirmed for any of the Top 7 STEC. It's possible that there was a non-Top 7 STEC in the material, but further investigation was not conducted by the independent laboratory. According to independent laboratory feedback, processing samples for these assays was very user friendly with a standard heat dependent lysis step and transfer into pre-aliquoted lyophilized pellets in PCR wells. Short run times on the instrument helped improve throughput for processing samples.

The BAX Real-time PCR Assays for detecting STEC species allow users to obtain presumptive positive results after 24 h of incubation and 1–2 h of processing and assay run time for STEC analysis. Presumptive results are easily visualized, denoted by a plus or minus sign within the software.

Table 1. Matrix study: BAX Real-time PCR Assays for STEC Suite and *E. coli* O157:H7 Exact (used together for Top 7 STEC results) presumptive vs. confirmed results in dried cannabis flower (>0.3% THC) and dried hemp flower (≤0.3% THC) (7)

	MPN ^a / Test			Pres	umptive		Co	nfirmed	•	
Matrix and Inoculum	Portion	N^b	\mathbf{x}^c	POD_{cp}^d	95% CI	х	POD_{cc}^e	95% CI	$dPOD_{cp}^f$	95% Cl ^g
Dried cannabis	NA^i	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	(-0.47, 0.47)
flower 10 g (E. coli	0.88 (0.40, 2.02)	20	10	0.50	0.30, 0.70	10	0.50	0.30, 0.70	0.00	(-0.13, 0.13)
O157:H7 ATCC ^h 43895)	2.96 (1.54, 9.78)	5	5	1.00	0.57, 1.00	5	1.00	0.57, 1.00	0.00	(-0.47, 0.47)
Dried hemp Flower	NA	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	(-0.47, 0.47)
10 g (<i>E. coli</i> O157:H7	1.48 (0.77, 3.74)	20	14	0.70	0.48, 0.86	14	0.70	0.48, 0.86	0.00	(-0.13, 0.13)
ATCC 43890)	6.77 (3.95, 16.2)	5	5	1.00	0.57, 1.00	5	1.00	0.57, 1.00	0.00	(-0.47, 0.47)

^oMPN = Most Probable Number is based on the POD of reference method test portions using the Least Cost Formulations MPN calculator, with 95% confidence interval.

Not applicable.

Table 3. Matrix study:	able 3. Matrix study: BAX Real-time PCR Assays for STEC Suite presumptive vs. confirmed results in dried hemp flower (≤0.3% THC) (7)										
Matrix and	MPN ^a / Test			Presu	ımptive		Con	firmed	_	_	
Inoculum	Portion	N^b	\mathbf{x}^c	POD_{cp}^d	95% CI	х	POD_{cc}^e	95% CI	$dPOD_{cp}^f$	95% Cl ^g	
Dried hemp Flower	NA^i	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	(-0.47, 0.47)	
10 g (<i>E. coli</i> O26	1.15 (0.61, 2.45)	20	11	0.55	0.34, 0.74	10	0.50	0.30, 0.70	0.05	(-0.11, 0.21)	
CDC ^h 03-3014)	2.96 (1.54, 9.78)	5	5	1.00	0.57, 1.00	5	1.00	0.57, 1.00	0.00	(-0.47, 0.47)	

^aMPN = Most Probable Number is based on the POD of reference method test portions using the Least Cost Formulations MPN calculator, with 95% confidence interval.

DISCUSSION OF THE MODIFICATION STUDY APPROVED APRIL 2023 (10)

The BAX System Real-time PCR Assays for STEC Suite successfully detected the target STEC species in beef trim sampling cloths at a 375 g test portion size. Although the initial study MP media data set showed 9 presumptive positives at 8 h but 10 presumptive positives at 10 and 24 h, subsequent repeat studies demonstrated the method's ability to detect all presumptive positives at 8, 10 and 24 h. All presumptive positives in these second sets of data also confirmed positive. The study data were unable to find a statistical difference between the BAX STEC method's presumptive and confirmed results, nor between the BAX STEC and the MLG 5C.03 reference method results with 95% confidence.

^bN = Number of test potions.

cx = Number of positive test portions.

 $^{^{}d}POD_{CP}$ = Candidate method presumptive positive outcomes divided by the total number of trials.

^ePOD_{cc} = Candidate method confirmed positive outcomes divided by the total number of trials.

fdPOD_{CP} = Difference between the candidate method presumptive result and candidate method confirmed result POD values.

^{995%} CI = If the confidence interval of a dPOD does not contain zero, then the difference is statistically significant at the 5% level.

^hAmerican Type Culture Collection, Manassas, VA.

^bN = Number of test potions.

^cx = Number of positive test portions.

^dPOD_{CP} = Candidate method presumptive positive outcomes divided by the total number of trials.

^ePOD_{cc} = Candidate method confirmed positive outcomes divided by the total number of trials.

fdPODc = Difference between the candidate method presumptive result and candidate method confirmed result POD values.

^{995%} CI = If the confidence interval of a dPOD does not contain zero, then the difference is statistically significant at the 5% level.

^hCenters for Disease Control and Prevention, Atlanta, GA.

Not applicable.

Table 1. Matrix study: BAX Real-time PCR Assay for STEC Suite presumptive vs. confirmed results in beef trim (375 g) sampling cloths (10)										
	cfu ^a / Test			Presumptive			Confirmed			
Matrix and Inoculum	Portion	N_p	xc	POD _{cp} d	95% CI	х	POD _{cc} e	95% CI	$dPOD_{cp}^f$	95% Cl ^g
Beef trim Sampling	NAi	5	0	0.00	0.00, 0.00	0	0.00	0.00, 0.00	0.00	(-0.47, 0.47)
cloth (E. coli O26:H11	0.64	20	9	0.45	0.26, 0.66	9	0.45	0.26, 0.66	0.00	(-0.13, 0.13)
DD 9703 ^h) 8 h, MP media	4.76	5	5	1.00	0.57, 1.00	5	1.00	0.57, 1.00	0.00	(-0.47, 0.47)
Beef trim Sampling	NA	5	0	0.00	0.00, 0.00	0	0.00	0.00, 0.00	0.00	(-0.47, 0.47)
cloth (E. coli O26:H11	0.64	20	9	0.45	0.26, 0.66	9	0.45	0.26, 0.66	0.00	(-0.13, 0.13)
DD 9703 ^h) 10 h, MP media	4.76	5	5	1.00	0.57, 1.00	5	1.00	0.57, 1.00	0.00	(-0.47, 0.47)
Beef trim Sampling	NA	5	0	0.00	0.00, 0.00	0	0.00	0.00, 0.00	0.00	(-0.47, 0.47)
cloth (<i>E. coli</i> O26:H11	0.64	20	9	0.45	0.26, 0.66	9	0.45	0.26, 0.66	0.00	(-0.13, 0.13)
DD 9703 ^h) 24 h, MP media	4.76	5	5	1.00	0.57, 1.00	5	1.00	0.57, 1.00	0.00	(-0.47, 0.47)

^acfu/test portion = Inoculating strain was grown overnight, then serially diluted and plated in triplicate to determine appropriate concentration for inoculation.

Not applicable.

Table 2. BAX Real-time PCR Assay for STEC Suite method vs. reference method results in beef trim (375 g) sampling cloths (10)										
	cfu ^a / Test			BAX Method			Reference Method		_	•
Matrix and Inoculum	Portion	N^b	xc	POD_c^d	95% CI	Х	POD_g^e	95% CI	$dPOD_c^f$	95% Cl ^g
Beef trim Sampling	NA^{j}	5	0	0.00	0.00, 0.00	0	0.00	0.00, 0.00	0.00	(-0.43, 0.43)
cloth (<i>E. coli</i> O26:H11	0.64	20	9	0.45	0.26, 0.66	13	0.65	0.43, 0.82	-0.20	(-0.46, 0.10)
DD 9703 ^h) 8 h, MP media ⁱ	4.76	5	5	1.00	0.57, 1.00	5	1.00	0.57, 1.00	0.00	(-0.43, 0.43)
Beef trim Sampling	NA	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	(-0.43, 0.43)
cloth (E. coli O26:H11	0.64	20	9	0.45	0.26, 0.66	13	0.65	0.43, 0.82	-0.20	(-0.46, 0.10)
DD 9703 ^h) 10 h, MP media	4.76	5	5	1.00	0.57, 1.00	5	1.00	0.57, 1.00	0.00	(-0.43, 0.43)
Beef trim Sampling	NA	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	(-0.43, 0.43)
cloth (E. coli O26:H11	0.64	20	9	0.45	0.26, 0.66	13	0.65	0.43, 0.82	-0.20	(-0.46, 0.10)
DD 9703 ^h) 24 h, MP media	4.76	5	5	1.00	0.57, 1.00	5	1.00	0.57, 1.00	0.00	(-0.43, 0.43)
Beef trim Sampling	NA	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	(-0.47, 0.47)
cloth (<i>E. coli</i> O26:H11	0.64	20	13	0.65	0.43, 0.82	13	0.65	0.43, 0.82	0.00	(-0.13, 0.13)
DD 9703 ^h) 8 h, mTSB+caa ^k	4.76	5	5	1.00	0.57, 1.00	5	1.00	0.57, 1.00	0.00	(-0.47, 0.47)
Beef trim Sampling	NA	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	(-0.47, 0.47)
cloth (E. coli O26:H11	0.64	20	13	0.65	0.43, 0.82	13	0.65	0.43, 0.82	0.00	(-0.13, 0.13)
DD 9703 ^h) 24 h, mTSB+caa	4.76	5	5	1.00	0.57, 1.00	5	1.00	0.57, 1.00	0.00	(-0.47, 0.47)

ecfu/portion = Inoculating strain was grown overnight, then serially diluted and plated in triplicate to determine appropriate concentration for inoculation.

^bN = Number of test potions.

 $^{^{}c}x$ = Number of positive test portions.

^dPOD_{CP} = Candidate method presumptive positive outcomes divided by the total number of trials.

^ePOD_{CC} = Candidate method confirmed positive outcomes divided by the total number of trials.

fdPOD_{CP} = Difference between the candidate method presumptive result and candidate method confirmed result POD values.

^{895%} CI = If the confidence interval of a dPOD does not contain zero, then the difference is statistically significant at the 5% level.

^hHygiena Culture Collection, New Castle, DE.

^bN = Number of test potions.

^cX = Number of positive test portions.

^dPOD_c = Confirmed candidate method presumptive positive outcomes confirmed positive divided by the total number of trials.

 $^{^{\}mathrm{f}}\mathsf{POD}_{R}$ = Confirmed reference method positive outcomes divided by the total number of trials.

^edPOD_C= Difference between the candidate method and reference method POD values.

^{f95%} CI = If the confidence interval of a dPOD does not contain zero, then the difference is statistically significant at the 5% level.

^hHygiena Culture Collection, New Castle, DE.

ⁱResults calculated using unpaired POD statistical analysis.

 $^{{}^{\}rm i}$ Not applicable.

^kResults calculated using paired POD statistical analysis.

REFERENCES CITED

- Varkey, Stephen, DeMarco, Daniel, Thompson, Leslie, Jensen Mark, Andaloro, Bridget, Fallon, Dawn, Rohrbeck Jeff, Hoelzer, Steve, Tadler, Monica, Kraynak, Julie, Davis, Eugene, Tice, George, and Wallace, Morgan., Evaluation of the DuPont™ BAX® System Real-Time PCR Assay Suite for STEC, AOAC Performance Tested MethodsSM certification number 091301.
- 2. Least Cost Formulations, Ltd., MPN Calculator-Version 1.6 (http://www.lcfltd.com/customer/LCFMPNCalculator.exe)
- U.S. Department of Agriculture, Food Safety and Inspection Service (2011) Microbiology Laboratory Guidebook (http://www.fsis.usda.gov/Science/Microbiological_Lab_Guidebook/index.asp)
- Corrigan, N., Weller, J., Wallace, M., Post, L., Bastin, B.., and Bird, P., Evaluation of BAX® System Real-Time PCR Assay Suite for STEC Level 2 Matrix Extension for 25 g Raw ground beef and All-purpose Flour, AOAC Performance Tested MethodsSM certification number 091301. Approved December 2017.
- U.S. Food and Drug Administration (2017) FDA Bacteriological Analytical Manual, Chapter 4A, Diarrheagenic Escherichia coli, https://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm070080.htm
- U.S. Department of Agriculture, Food Safety and Inspection Service (2014) Microbiology Laboratory Guidebook, Chapter 5B.05, Detection and Isolation of non-O157 Shiga Toxin-Producing Escherichia coli (STEC) from Meat Products and Carcass and Environmental Sponges, https://www.fsis.usda.gov/wps/wcm/connect/7ffc02b5-3d33-4a79-b50c-81f208893204/MLG-5B.pdf?MOD=AJPERES
- Corrigan, N., Simmons, C., Lorine, L., and Tudor, A., Validation of BAX® System Real-Time PCR Assays for STEC Suite and E. coli O157:H7 Exact for the
 Detection of Shiga-toxin producing Escherichia coli (STEC; stx 1 and/or stx 2 positive) in Dried Cannabis Flower and Dried Hemp Flower Targeted
 Matrix Extension, AOAC Performance Tested MethodsSM certification number 091301. Approved January 2022.
- 8. Standard Method Performance Requirements (SMPRs®) for Detection of Shiga toxin-producing Escherichia coli in Cannabis and Cannabis Products (AOAC SMPR 2020.012) https://www.aoac.org/wp-content/uploads/2021/02/SMPR-2020_012-1.pdf [Accessed September 2021]
- 9. Corrigan, N., Weller, J., Latney, D., Morris, M., and Stoltenberg, S., Validation of BAX® System Real-Time Assay for STEC Sutie and *E. coli* O157:H7 Exact for the Detection of Shiga-toxin producing *Escherichia coli* (STEC; *stx*1, and/or *stx*2 positive) in Beef Trim Sampling Cloths, AOAC *Performance Tested Methods*SM certification number 091301. Approved April 21, 2023.
- United States Department of Agriculture Food Safety and Inspection Service MLG 5C.03 Detection, Isolation, and Identification of Top Seven Shiga Toxin-Producing Escherichia coli (STEC) from Meat Products, Carcass, and Environmental Sponges, https://www.fsis.usda.gov/sites/default/files/media file/documents/MLG-5C.03.pdf