

CERTIFICATION

AOAC Research Institute Performance Tested MethodsSM

Certificate No.

120701

The AOAC Research Institute hereby certifies the method known as:

BAX® System Real-Time PCR Assay for *Staphylococcus aureus*

manufactured by

Hygiena 2 Boulden Circle New Castle, DE 19720 USA

This method has been evaluated in the AOAC Research Institute *Performance Tested Methods*SM Program and found to perform as stated in the applicability of the method. This certificate indicates an AOAC Research Institute Certification Mark License Agreement has been executed which authorizes the manufacturer to display the AOAC Research Institute *Performance Tested Methods* SM certification mark on the above-mentioned method for the period below. Renewal may be granted by the Expiration Date under the rules stated in the licensing agreement.

Issue Date

December 20, 2023

Scott Coates, Senior Director
Signature for AOAC Research Institute

Scott Crates

Expiration Date

December 31, 2024

AUTHORS

ORIGINAL VALIDATION: F. Morgan Wallace, Tim Dambaugh, George Tice, Bridget Andaloro, Dawn

Fallon, Eugene Davis, and Sigun Wang

MODIFICATION JULY 2013: Steve Hoelzer, F. Morgan Wallace, Lois Fleck, Deana DiCosimo, Jacqueline Harris, Bridget Andaloro, Andrew Farnum, Eugene Davis, and Jeff Rohrbeck SUBMITTING COMPANY

DuPont ESL Building 400 Route 141 & Henry Clay Road Wilmington, DE 19880-0400 **CURRENT SPONSOR**

Hygiena 2 Boulden Circle New Castle, DE 19720

USA

METHOD NAME

BAX® System Real-Time PCR Assay for *Staphylococcus aureus* Formerly DuPont™ BAX® System Real-Time PCR Assay for *Staphylococcus aureus*

CATALOG NUMBER

BAX® System Assay KIT2020 (D12762689)

INDEPENDENT LABORATORY

Cherney Microbiological Services 1110 Huron Road Green Bay, WI 54311 USA

APPLICABILITY OF METHOD

Target organism - Staphylococcus aureus.

Matrixes – (ISO 6888-1, 10 g) – ground beef (ISO 6883-3, 10 g) – soy-based powdered infant formula, milk-based powdered infant formula (FDA BAM Ch. 12, 10 g) – soy protein isolate

Performance claims – No significant difference was found in the performance of the method and the reference methods for the detection of S. aureus.

REFERENCE METHODS

International Organization for Standardization (ISO) (1999) ISO 6888-1: Microbiology of food and animal feeding stuffs — Horizontal method for the enumeration of coagulase-positive staphylococci (Staphylococcus aureus and other species) — Part 1: Technique using Baird-Parker agar medium. (4)

International Organization for Standardization (ISO) (2004) ISO 6888-3: Microbiology of food and animal feeding stuffs — Horizontal method for the enumeration of coagulase-positive staphylococci (*Staphylococcus aureus* and other species) — Part 3: Detection and MPN technique for low numbers. (5)

U.S. Food and Drug Administration, FDA Bacteriological Analytical Manual. (6)

ORIGINAL CERTIFICATION DATE

December 03, 2007

METHOD MODIFICATION RECORD

- 1. July 2013
- March 2017 Level 1
- 3. December Level 1
- 4. May 2019 Level 1
- 5. December 2019 Level 1
- 6. December 2021 Level 1
- 7. December 2023 Level 1

CERTIFICATION RENEWAL RECORD

Renewed annually through December 2024.

SUMMARY OF MODIFICATION

- 1. Addition of Thermal Block for automated sample lysis.
- Company change from DuPont Nutrition & Health to Qualicon Diagnostics LLC., a Hygiena company.
- 3. Inserts, manuals, and labels updated to Hygiena.
- 4. Editorial insert updates and corporate address.
- 5. Editorial/clerical changes.
- 6. Editorial/clerical changes.
- 7. Editorial/clerical changes

Under this AOAC *Performance Tested Methods*^{5M} License Number, 120701 this method is distributed by: NONE

Under this AOAC $\it Performance\ Tested\ Methods^{SM}$ License Number, 120701 this method is distributed as: NONE

PRINCIPLE OF THE METHOD (1)

The BAX system uses the Polymerase Chain Reaction (PCR) to amplify specific DNA fragments, which are stable and unaffected by growth conditions [2]. Each fragment is a genetic sequence that is unique to the targeted organism, thus providing a highly reliable indicator that the organism is present. The BAX system simplifies the PCR process by combining the requisite PCR reagents into a stable, dry, manufactured tablet already packaged inside the PCR tubes. After hydrating these tablets with prepared samples, the tubes remain sealed to reduce the potential for contamination.

In a typical PCR application, sample DNA is combined with DNA polymerase, nucleotides and primers that are specific for a given nucleotide sequence. The mixture then undergoes a series of timed heating and cooling cycles. Heating denatures the DNA, separating it into single strands. As the mixture cools, the primers recognize and anneal (bind) to the targeted DNA sequence. DNA polymerase then uses nucleotides to extend the primers, thus creating two copies of the targeted fragment (amplification). Repeating cycles of denaturing, annealing and extending produces an exponential increase in the number of target DNA fragments, creating millions of copies in a very short time. If the target sequence is not present, no detectable amplification takes place [2].

The BAX system PCR tablets used in real-time assays including this test kit also contain dye-linked probes. Intact probes are short oligonucleotides with quencher dye at one end that absorbs the signal from fluorescent reporter dye at the opposite end. During PCR cooling cycles, probes bind to a specific area within the targeted fragment. During extension, DNA polymerase encounters the probe in its path and breaks the probe apart. This releases the reporter dye, resulting in increased fluorescent signal [3].

The BAX system Q7 instrument uses multiple filters to measure signal at the end of each cycle and report results for each target in less than 90 minutes.

DISCUSSION OF THE VALIDATION STUDY (1)

Results from the method comparison studies demonstrate BAX system performance that is statistically indistinguishable from the reference methods for detection of *S. aureus* for comparably enriched samples: ISO 6888-1: 2003 (E) for ground beef, ISO 6888-3: 2003 (E) for soy and milk-based powdered infant formulas, and FDA-BAM for soy protein isolate. In addition, for infant formula, the enrichment of non-diluted samples was found to allow for the analysis of a larger weight of sample without any apparent negative effect on *S. aureus* growth or PCR detection. This method was significantly more sensitive, despite the use of the same amount of enrichment media and should thus be considered as an alternate enrichment method where applicable. All BAX positive samples were found to culture confirm, with the exception of one BAX enrichment from the independent laboratory study, which was characterized by the independent laboratory as a contamination event and upon re-test gave the expected result which was in concordance with the culture confirmation. The inclusivity/exclusivity study showed 100% agreement with expected results for the test panel. For infant formula enrichments, adding product directly to the enrichment media (10 g vs 10 ml of a 1:10 dilution of the product) was found to give a significant improvement in the detection indicating no growth or PCR issues with this modification.

Table 6. Composite Table of Samples Tested with the BAX System Method for the Detection of *Staphylococcus aureus* Compared with the ISO 6888-1:2003(E), ISO 6888-3:2003(E), and FDA-BAM Reference Methods (1)

Matrix	Method	Total	MPN / 1g	Amount Assayed	BAX Assay Positive	Culture Confirmed	Sensitivity %	False Neg %	False Pos %	Specificity %	Chi Square Test vs Reference
Ground Beef (Naturally Contaminated)	BAX	20	0.092	1 ml (0.1 g)	18/20	18/20	100	0	0	100	0.0
	ISO	20	0.092	1 ml (0.1 g)	-	18/20	-	-	-	-	0.0
	BAX	20	2.4	10 ml (1.0 g)	12/20	12/20	100	0	0	100	0
	BAX	5	0	10 ml (1.0 g)	0/5	0/5			0		
Soy-Based Powdered	BAX	20	2.4	10 g	20/20	20/20	100	0	0	100	9.75
Infant Formula	BAX	5	0	10 g	0/5	0/5			0		
	ISO	20	2.4	10 ml (1.0 g)	-	12/20					
	ISO	5	0	10 ml (1.0 g)	-	0/5					
	BAX	20	0.43	10 ml (1.0 g)	10/20	10/20	100	0	0	100	0
	BAX	5	0	10 ml (1.0 g)	0/5	0/5			0		
Milk-Based Powdered Infant	BAX	20	0.43	10 g	20/20	20/20	100	0	0	100	13
Formula	BAX	5	0	10 g	0/5	0/5			0		
	ISO	20	0.43	10 ml (1.0 g)	-	10/20					
	ISO	5	0	10 ml (1.0 g)	-	0/5					
	BAX	20	2.4	1 ml (0.1 g)	16/20	16/20	100	0	0	100	0
Soy Protein Isolate	BAX	5	0	1 ml (0.1 g)	0/5	0/5			0		
30y Flotelli isolate	BAM	20	2.4	1 ml (0.1 g)	-	16/20					
	BAM	5	0	1 ml (0.1 g)	-	0/5					
	BAX	20	0.93	10 ml (1.0 g)	19/20	19/20	100	0	0	100	1.08
Milk-Based	BAX	5	0	10 ml (1.0 g)	0/5	0/5			0		
Powdered Infant	BAX	20	0.93	10 g	20/20	20/20	100	0	0	100	1.54
Formula	BAX	5	0	10 g	0/5	0/5			0		
(Independent Study)	ISO	20	0.93	10 ml (1.0 g)		17/20					
	ISO	5	0	10 ml (1.0 g)		0/5					

BAX® System Real-Time PCR Assay for Staphylococcus aureus, AOAC Performance Tested MethodsSM Certification Number 120701

Table 7. <i>S. a</i>	ureus Inclusivity Pane	el (1)					
Strain #	Isolate	Source	Result	Strain #	Isolate	Source	Result
DD10156	S. aureus aureus	ATCC 12600 Clinical	POS	TD1467	S. aureus	Processed Food	POS
DD1096	S. aureus	Unknown	POS	TD1468	S. aureus	Processed Food	POS
DD1098	S. aureus	Unknown	POS	TD1469	S. aureus	Processed Food	POS
	S. aureus_						
	Coagulase					ATCC 33591	
DD1379	negative	Unknown	POS	TD7445	S. aureus	Clinical	POS
	S. aureus_					ATCC 43300	
DD1385	Coagulase negative	Unknown	POS	TD7446	S. aureus	Clinical	POS
DD1363	S. aureus	Howler monkey	POS	TD1472	S. aureus	Clinical	POS
DD4100 DD613	S. aureus	Chicken	POS	TD1472	S. aureus	Clinical	POS
DD013 DD912	S. aureus	Unknown	POS	TD1527	S. aureus	Clinical	POS
DD912 DD9766	S. aureus	Agricultural	POS	TD1528	S. aureus	Clinical	POS
DD9769	S. aureus	Ovine mastitis	POS	TD1529	S. aureus	Clinical	POS
DD9709 DD9771		Clinical	POS	TD7426	S. aureus	ATCC 13709	POS
DD9771 DD9772	S. aureus	Clinical	POS	TD7426 TD1471		Processed Food	POS
	S. aureus				S. aureus		PU3
DD9774 DD9775	S. aureus	Clinical Clinical	POS POS	DD9780 TD7447	S. aureus	Clinical ATCC 29213	POS
	S. aureus				S. aureus		
DD9776	S. aureus	Clinical	POS	TD7448	S. aureus	ATCC 10390	POS
DD9778	S. aureus	Clinical	POS	TD1470	S. aureus	Processed Food	POS
TD7449	S. aureus	ATCC 14154 Clinical	POS	DD9784	S. aureus	Clinical	POS
TD7450	S. aureus	ATCC 19636 Clinical	POS	DD9781	S. aureus	Clinical	POS
TD7454	6	ATCC 25022 Clinian	DOC	TD74F4	C	ATCC 29247	POS
TD7451	S. aureus	ATCC 25923 Clinical	POS POS	TD7454	S. aureus	CDC Unknown	POS
DD9803	S. aureus	Agricultural		TD7550	S. aureus		
DD9867	S. aureus	Mixed vegetables	POS	TD 13043*	S. aureus	Ground Beef	POS
TD 13044*	S. aureus	Ground Beef	POS	TD 13045*	S. aureus	Ground Beef	POS
TD 13046*	S. aureus	Ground Beef	POS	TD 13047*	S. aureus	Ground Beef	POS
TD 13048*	S. aureus	Ground Beef	POS	TD 13049*	S. aureus	Ground Beef	POS
TD 13050*	S. aureus	Ground Beef	POS	TD 13051*	S. aureus	Ground Beef	POS
TD 13052*	S. aureus	Ground Beef	POS	TD 13053*	S. aureus	Ground Beef	POS
TD 13054*	S. aureus	Ground Beef	POS				

Ground Beef isolates indicated are those obtained during methods development for this study. All isolates included are independent in origin and have novel Riboprint ™ patterns by EcoRI molecular subtyping using the DuPont Qualicon Riboprinter ™.

All confirmed *S. aureus* isolates obtained during methods development demonstrated a positive BAX ® test kit result.

	Table 8. S. aureus Exclusivity F	Panel (1)					
Strain #	Isolate	Source	Result	Strain #	Isolate	Source	Result
DD871	Staphylococcus arlettae	Poultry	NEG	DD854	Staphylococcus gallinarum	Poultry	NEG
DD7397	Staphylococcus auricularis	Unknown	NEG	DD668	Staphylococcus haemolyticus	Human	NEG
DD872	Staphylococcus auricularis	Human	NEG	DD865	Staphylococcus hominis	Human	NEG
DD873	Staphylococcus capitis	Human	NEG	DD887	Staphylococcus hyicus	Swine	NEG
DD4213	Staphylococcus caprae	Human	NEG	DD856	Staphylococcus intermedius	Avian	NEG
DD4214	Staphylococcus caprae	Human	NEG	DD8423	Staphylococcus saprophyticus	Urine	NEG
DD874	Staphylococcus caprae	Goat milk	NEG	DD861	Staphylococcus schleiferi	Clinical	NEG
DD1092	Staphylococcus carnosus	Fermented sausage Fermented	NEG	DD1113	Staphylococcus sciuri	Human	NEG
DD1093	Staphylococcus carnosus	sausage	NEG	DD4277	Staphylococcus scuiri	Squirrel	NEG
DD1094	Staphylococcus carnosus	Dry sausage	NEG	DD8357	Staphylococcus simulans	Human	NEG
DD1095	Staphylococcus carnosus	Fermented sausage	NEG	DD5366	Staphylococcus warneri	Human	NEG
DD851	Staphylococcus chromogenes	Swine	NEG	DD756	Staphylococcus xylosus	Unknown	NEG
DD8455	Staphylococcus cohnii	Human	NEG	DD913	Staphylococcus xylosus	Human	NEG
DD2704	Staphylococcus delphini	Unknown	NEG	DD4510	Macrococcus caseolyticus	Unknown	NEG
DD864	Staphylococcus epidermidis	Nose	NEG	DD4508	Macrococcus caseolyticus	Unknown	NEG
DD2636	Staphylococcus felis	Cat	NEG	TD 5946	Staphylococcus piscifermentans	Fermented shrimp Vacuum	NEG
DD659	Lactobacillus lactis	Unknown	NEG	DD 687	Lactobacillus carnis	pack lamb	NEG
DD626	Lactobacillus viridescens	Cured meat	NEG	DD558	Pseudomonas diminuta	Unknown	NEG
TD1517	Stenotrophomonas maltophilia	Environmental	NEG	DD563	Pseudomonas putida	Unknown	NEG
TD1518	Stenotrophomonas maltophilia	Environmental	NEG	DD576	Pseudomonas mendocino	Unknown	NEG
TD2936	Shewanella putrefaciens	Unknown	NEG	DD577	Pseudomonas stutz	Unknown	NEG
TD2965	Shewanella putrefaciens	Unknown	NEG	DD3982	Pseudomonas aeruginosa	Unknown	NEG

DISCUSSION OF MODIFICATION APPROVED JULY 2013 (7)

The results of the method comparison between the digital DuPont Thermal Block and the analog heating/cooling blocks are provided in Table 3 below. For all sample types and BAX System assays evaluated, the results for samples processed with the DuPont Thermal Block and the original heating/cooling blocks demonstrated no significant statistical difference as indicated by POD analysis (the 95% confidence interval of the dPOD included 0 in all cases). For additional figures illustrating the target responses of the individual BAX System assays, see Appendix B.

All 544 samples inoculated with high levels of the target organism returned positive results with the BAX System using both sample preparation methods, and all 544 samples tested as unspiked negative controls returned negative results with the BAX System using both sample preparation methods with the exception of the non-inoculated poultry rinse samples that gave positive results for Campylobacter jejuni, while giving negative results for the target C. coli that was spiked into the test samples. For samples inoculated with low levels of target organism, the two preparation methods returned identical results for 530 of the 544 samples tested. The results for the 14 samples that returned different results between the two methods are summarized in Table 3. Because the low-spike samples were tested at levels near the limit of detection for the BAX System assays, some discrepancy between the two methods is expected based on factors such as the distribution of the target organism within the sample.

Analysis of target response in cases where a fractional response was not generated, while demonstrating significant differences from a statistical standpoint in some cases, were not indicative of any difference that would likely be significant in a practical sense. All average differences were less than 10% for melt curve-based target peak height or target peak area to target plus internal control peak areas (for the Yeast and Mold assay) and all average Ct differences were less than 1 for all real time assay.

Because the difference in results between the two methods demonstrated no significant statistical difference as indicated by the POD analysis, these differences are found to be acceptable in this study for demonstrating equivalency between the two methods.

BAX System	Sample Type	Spike	Test Portions	Heating/Cooling Blocks			DuPont Thermal Block			$dPOD_{TB}$	95% CI ^e
Assay		Level		Χa	POD_{2B}^{b}	95% CI ^e	Хa	POD_{TB}^{c}	95% CI ^e	d	
Real-time	Real-time	High	17	17	1	0.82, 1.0	17	1	0.82, 1.0	0	-0.18, 0.1
aphylococcus	Ground beef	Low	17	17	1	0.82, 1.0	17	1	0.82, 1.0	0	-0.18, 0.1
aureus		Control	17	0	0	0, 0.19	0	0	0, 0.19	0	-0.18, 0.1
		High	17	17	1	0.82, 1.0	17	1	0.82, 1.0	0	-0.18, 0.1
	Soy infant formula	Low	17	17	1	0.82, 1.0	17	1	0.82, 1.0	0	-0.18, 0.1
	Torrifula	Control	17	0	0	0,0.19	0	0	0, 0.19	0	-0.19, 0.1
		High	17	17	1	0.82, 1.0	17	1	0.82, 1.0	0	-0.18, 0.1
	Powdered infant formula	Low	17	17	1	0.82, 1.0	16	0.94	0.73, 0.99	0.059	-0.13, 0.
	illialit lollilula	Control	17	0	0	0,0.19	0	0	0, 0.19	0	-0.19, 0.3

REFERENCES CITED

- Wallace, Morgan, Dambaugh, Tim, Tice, George, Andaloro, Bridget, Fallon, Dawn, Davis, Eugene, and Wang, Siqun., Evaluation of the DuPont™ BAX® System Real-Time PCR Assay for Staphylococcus aureus, AOAC Performance Tested Methods™ certification number 120701.
- 2. Innis, MA, and Gelfand, DH (1989) PCR Protocols: A Guide to Methods and Applications, Academic Press, Burlington, MA.
- 3. Livak, K.J., Flood, S.J.A., Marmaro, J., and Mullah, K.B., inventors Perkin-Elmer Corporation (Foster City, CA), assignee. (1999) Hybridization assay using self-quenching fluorescence probe. United States patent 5,876,930.
- 4. International Organization for Standardization (ISO) (1999) ISO 6888-1: Microbiology of food and animal feeding stuffs Horizontal method for the enumeration of coagulase-positive staphylococci (Staphylococcus aureus and other species) Part 1: Technique using Baird-Parker agar medium.
- 5. International Organization for Standardization (ISO) (2004) ISO 6888-3: Microbiology of food and animal feeding stuffs Horizontal method for the enumeration of coagulase-positive staphylococci (*Staphylococcus aureus* and other species) Part 3: Detection and MPN technique for low numbers.
- U.S. Food and Drug Administration, FDA Bacteriological Analytical Manual, http://www.cfsan.fda.gov/~ebam/bam-12.html date of access 9
 Oct 2007.
- Hoelzer, S., Wallace, F.M., Fleck, L, DiCosimo, D., Harris, J., Andaloro, B., Farnum, A., Davis, E., and Rohrbeck, J., Evaluation of the DuPontTM Thermal Block for Automated Sample Lysis with the BAX® System Method (Minor Modification), AOAC Performance Tested MethodsSM certification number 120701. Approved July 2013.